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Abstract

This paper shows the application of radial basis functions, RBF, to the numerical solution of the
classical Black-Scholes, BS, equation, the most important financial engineering tool. The numer-
ical solutions included both the classical and the diffusional form of the BS equation. Thin-Plate
Spline (TPS) and Cubic radial basis functions were analyzed in detail as to their ability to allow
accurate solutions to the BS equation. A study of feasible numerical solution values, that is, lim-
iting applicable values of stock value mesh size, time step and integration schemes are present-
ed. As a conclusion, it can be affirmed that numerical solutions of BS equation by means of RBF
are effective; furthermore, recommendations are presented for solving the equation with a
desired accuracy level. The analyses also show that, when RBF techniques are used, there is no
significant difference between solutions arising from diffusional and classical BS forms.
Key-words. financial engineering, Black and Scholes, radial basis functions, diffusional method,
numerical methods.

O Método de Fun¢des de Base Radial
Aplicado a Engenharia Financeira

Resumo

Este artigo mostra a aplicacdo de fungbes de base radial, RBF, & solugdo numérica da equacgéo
de Black-Scholes, BS, classica, a ferramenta mais importanie da engenharia financeira. As
solugdes numéricas incluiram a forma classica e difusional da equagdo de BS. As fun¢des radi-
ais de base dos tipos Thin-Plate Spline (TPS) e ctibica foram analisadas em detfalhe no que con-
ceme as suas capacidades de permitir solugbes acuradas da equagdo de BS. Apresentam-se 05
valores limites do tamanho de malha do valor da opcdo, do passo de tempo e dos esquemas da
integragdo, que podem ser usados para obter solugbes numéricas viavels. Como concluséo,
pode-se afirmar gue a solugdo numérica da equacao de BS por meio do RBF ¢é eficaz; apresen-
ta-se uma série das recomendagbes para resolver a equagdo num nivel desejado de exatiddo.
Além disso, as anélises mostram que ndo ha nenhuma diferenga significativa entre as solugbes
numéricas obtidas por meio da forma difusional e da classica.

Palavras-chave. engenharia financeira, Black e Scholes, funcbes de base radial, método
difusional, métodos numéricos.
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introduction

The most important models of financial engineering are based on Black-Scholes, BS, equation,
and are used to predict the outcome of financial options and derivative securities and, thus, help
in decision-making processes {COX & RUBINSTEIN, 1985; LEENTVAAR, 2006). Derivative
prices are non-linear functions of the underlying risk factors, and the dynamics of the underlying
asset follows a stochastic process (MUCHMORE, 2005; CRETIEN, 2008). The BS aquation pro-
vides insight into the valuation of debt relative to equity (HULL, 1989; SIEGEL et al, 1992}
Black-Scholes basic equation is a linear parabolic hyperbolic equation, with stochastic variables
and parameters. improvements on the original model led to a set of non-linear partial differential
equations essentially equivalent to the engineering convection-diffusion equation. WHALLEY &
WILMOTT (1993), for instance, proposed the following modified form of Black-Scholes equa-
tions:
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where V, 2, s, S, 1, G, Hg stand, respectively, for option value, time, volatility, asset (underlying

security) price (a stochastic variable), interest rate, option’s gamma and a measure of the expect-
ed risk of a portfolio; kq, ko and kg are cost parameters. It should be emphasized that the two

last terms of the equation constitute a non-linear source term. This paper is concerned with the
basic formulation of the BS equation, which excludes the last term in equation (1).

Only for some simple assets and simple stochastic environments do we have a closed form ana-
lytical solution for the BS equation. In all other cases we have fo rely on numerical methods to
compute an approximate solution (BARUCCI! et al., 1996; GARCIA-OLIVARES, 2003; ZHANG,
2005). W is very difficult to generate stable and accurate solutions to Black-Scholes equations
due to the discontinuity .of the payoff function around the exercise price (BOZTOSUN & KOC,
2003; CONT & VOLTCHKOVA, 2005},

Many numerical methods have been proposed to model the interaction between advective and
diffusive processes. These methods include finite difference, finite element and boundary ele-
ment methods which are derived from local interpolation schemes and require a mesh to support
the application. Finite difference and finite element solutions of the advection—diffusion equation
present numerical problems of oscillations and damping (MURPHY & PRENTER, 1985; LEE et
al., 1987; ZIENKIEWICZ & TAYLOR, 1991; HOFFMAN, 1992; WILMOTT et al., 1995; WILMOTT,
1998; TOMAS HI et al,, 2001; BOZTOSUN & CHARAFI, 2002 AMSTER et al., 2003. Zhang
(2005) attempted an adaptive finite element procedure to solve the problem of Pricing American
options; despite his mathematical reasoning, he did not present any benchmark-based or practi-
cal evidence for his claim.

The mesh generation problem over irregularly shaped domains is often in excess of 70% of the
total computational cost (BROWN et al., 2005). Thus, meshless methods such as those using
Radiat Basis Functions have therefore recently attracted much attention from the engineering
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community and RBFs have become an important tool in scientific computing (BOZTOSUN &
CHARAFI, 2002). RBF methods have shown the potential to be a universal grid free method for
the numerical solution of partial differential equations (SARRA, 2004). However, when the num-
ber of interpolation points used is large and they are densely distributed the resulting solution
matrix becomes ill-conditioned. in practice, direct methods for solving the systems resulting from
RBFs are inappropriate for problems with more than 2000 interpolation points Other highly accu-
rate spatial discretization schemes such as pseudospectral methods do not have the inherent
flexibility of the RBF methods and adaptation and complex geometries are more difficult to deal
with (SARRA, 2004).

The diffusional method was proposed by Fortes (1997) and applied to the solutions of several
benchmark problems (FORTES & FERREIRA, 1998 and 1999) and is based on transforming the
original hyperbolic parabolic partial differential equation intc a parabolic partial differential equa-
tion; further application of Galerkin's formulation leads to a variational form, readily amenable to
computer implementation. Thus, no use is made of ad-hoc Petrov-Galerkin schemes. The
method is simple to apply and was shown to perform much better when solving benchmark and
practical convection-diffusion problems than the commonly employed finite difference techniques
{implicit finite-difference methods  including Crank-Nicolson, Douglas schemes, ADI and
Hopscotch methods; see HOFFMAN, 1992, for limitations on these methods).

Koc et al(2003) presented a first work on the application of RBF fo the solution of BS equation.
However, their paper is very succinct and, despite showing some excellent results, does not point
to any methodology for obtaining accurate and converging RBF solutions to the BS equation. The
objective of this article is to analyze, in a deeper context, the potentiality of the RBF method to
solve financial engineering problems. More specifically this paper aims at:

e Presenting Cubic and TPS RBF modeling techniques for solving and optimizing the numer-
ical solution of the BS equation;

# Comparing the effectiveness of the diffusional against the classical form of the BS equa-
tion, when both employ the RBF method.

e Evaluating the benefits and limitations of the RBF method with respect to the numerical
parameters such as mesh size, time step and integration method.

Methodology

The diffusional and non-diffusional forms of Black-Scholes Equation

The classical form of the basic Black-Scholes equation, BS, is (WILMOTT, 1998):
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In this work, the numerical calculations involved solving the BS equation with a call option with
the following payoff function, that'is, the value of the call option at expiry (? =T), in a neutral-risk
world:
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Payoff (S, T) = max (S-E, 0) 3

where E is the option exercise or strike value, that is, its value at ? = T. The respective boundary
conditions are:

V(0, 1) =0 ; V(w,1) = S-Ee(T-7) )

One should note that this is not an initial value problem, since the payoff function is given att =
T. In order to make it an initial boundary value problem let us make t = T — ?, so that the above
equation becomes
W 152522V g g (5)
at 2 85 a8
In order to put this last equation into the diffusional form, that is, a form that eliminates the con-
vective term, use is made of the identity
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By comparing the right hand side of equation (20) with its left hand side, after algebraic manipu-
lations, one arrives at:

B- Do _(s)%
o) (7)
and
1 o232
Ammg = (8)
C,S°

By substituting the values of A and B into equations (6 and 5), one obtains the diffusional form
of Black-Scholes equation:

5 oy o (Zav) 255w
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The initial and boundary conditions are:
V(S,0) = Payoff(S,0) = max (S-E, 0);  V(0,t) =0 ; V(w,t) = S-Ee" (10)

Radial basis functions applied to the original Black-Scholes equation

The idea behind the RBF method is to use linear translate combinations of a basis function of one
variable, expanded about given scattered ‘data centers’ to approximate an unknown function by

V(S.1) = Za, e, 21 s - 3, (1)




where rj= |8 - 5 || is the Euclidean norm and ., are the coefficients to be determined. Usual
radial basis functions are defined by (KOC et al., 2003):

Thin-Plate Spline, TPS : ¢(r, )= r* log [r, ) (12)
Multiquadrics, M@ o )= Je7+17 (13)

Cubic :pfr, )=r. (14)

Gaussian :¢(¥1)= g~ (15)

in this work, only cubic and TPS RBF will be used, due o their simplicity and proven accuracy
for other types of problems and the difficulty associated to choosing good values for the shape
parameter ¢, which depends on the problem type (BOZTOSUN and CHARAFI, 2002).

The original Black-Scholes equation shown above in equation (2) can be discretized using the ?-
weighted method:

V(S.1)
a

So, equation (2) becomes:

=f(SH=(1-6)f(B . 1)+6-f(S,.,.t+4t) for0<O <1 (16)
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Defining and, then the previous equation can be written in the form:
[1 . ,[%625%2 +187 - rﬂ AR [1 + ‘[%sasﬁvg +157 - r)]-\i" (19)

where o = AL B = (1 ~ )AL, 9= 5‘3 and y2= % . And, now, by defining two new operators, H,
and H:

Hy=1-a ‘G—c?szv? + I8V - r] CH_=1+ g-[%gzs%ﬂ + rSV—r] (20)

equation (14) becomes:
N N
74 AH, 0(8,) = 21 AH_6(8y) fori=1.N (21)
= p=

Equation {22) generates a system of linear equations, which can be solved to obtain the
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unknowns, }kgﬂ”, from the known values of A;” at a previous time step. Then they are trans-
formed to the V(8, 1) by equation (14).

Radial basis functions applied to the diffusional form of Black-Scholes
equation

Algebraic manipulations of equation (9), following the 7-weighted method, lead to:

r 2 G
255" % oo’ 255"
= -] VEE ¥ ~ = ™= = +§

The operators H, and H_ are then defined by.

23 2 2r 2e b-23
28" Z 257 25 -
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Finally, the new operators H, and H_, are applied in equation (21), generating a system of RBF
linear equation given by and equivalent to equation (21).

2 jf-;*‘@
vseTy- 287 «Hw (22)
o
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Analytical solution

The analytical solution for the present value of a call option is given by:

VIS, T-1)=5 N(d,)—E -N(d,) e’ (24)
where
. zn[g){u—%c*}r(r- 1) (25)
a-AT-1
d,(5,7T -t)=d, (8T -t)-o.fT -1t (26)

and N is the cumulative normal probability density function,

3

du +

NGO = (2a) 5 e E (27)
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The instantaneous Payoff function, M, is given by

R L Ll
M(S.T -t})m S-Ee S ,EE =0 {(28)
0, otherwise
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Results and Discussion

The results to be shown were obtained via Mathcad, a symbolic mathematical programming lan-
guage and solver. Option value or price or premium is defined as the call option value that an
option buyer pays the seller. The fixed data used in the simulation studies were:

s Exercise value = E = 50

» Volatility = s = 20%

e Riskless interestrate = r = 5%

e Expiry time =T = 1

» Present exact analytical call option value = 5.225

The total number of stock price meshes is N and the mesh size, AS, is defined by AS = S/N. The
total number of time steps is Nt, while the time step, At, is defined by At = T/Nt.

In this work, numerical option value relative errors refer o option prediction values at the sirike
{exercise) price value (S8 = E = 50) and are defined as:

Humcricol option valuc-Analytiont solution walue
ot Ay x 100%
Angiytical Solubon value

& = Relative error of numerical option price (%)=

One of the boundary conditions, typical in BS problems, requires specifying V(S, t) at S = ; prac-
tical numerical solutions require that this value should be reduced and, the larger the allowable
reduction, the better the efficiency of the numerical solution, due to decreased equation matrix
size; thus, the practical maximum simulated value for S was called S,

The accuracy of finite difference solutions of BS equations can be heavily improved if the diffu-
sional method substitutes the classical approach (FORTES et al, 2005). However, in this work,
when RBF are considered, the diffusional and the classical form of Black-Scholes equation led
to the same results. Thus, this fact will not be shown in the figures to come.

Furthermore, as shown in Figure 1, excellent solutions can be obtained by any of the cubic or
TPS radial basis functions. Figure 1 was obtained with Nt =100 time steps, N =112 meshes and
AS = 0.714, with an upper value of S equal to 80. With these parameters, the cubic RBF led to
an option price relative error of 0.00039% at the exercise option value (E=50), while in the case
of the TP8 RBF, the relative error was 0.019%.
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Figure 1. Cubic and TPS RBF simulated values of a call option, V, compared against the analyt-
ical solution and payoff function values; E =50, T = 1, s = 20%, r = 5%,

Figure 2 shows the effect of the integration scheme; the ?-variation was performed based on Nt
=100, N = 112, S,,2¢ = 80 for cubic RBF and Nt = 300, N = 200 and Spsy, = 100, in the case of

TPS RBF. As can be noted, it is advisable to use implicit schemes with 8 > 0.5, as a general rule;
smaller 6 values lead to divergence. Although the choice of 8 can affect the accuracy of numeri-
cal solutions, Figure 2 allows affirming that a good choice is to use a ? value slightly larger than
the one that leads to divergence. Even higher values of 8 still provide highly accurate solutions.
One can notice that Cubic RBF is more efficient than TPS RBF, since cubic RBF require less time
steps, a smaller S, and less meshes for approximately similar error levels. Changes in AS, At

and Sy that is, the other simulation parameters, did not affect the just mentioned conclusions.

i
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Figure 2. Relative errors of cubic and TPS RBF as affected by the integration 6-value. E=50,T
=1, 6 = 20%, r = 5%; Nt = 100, N = 112, Sax = 80 for cubic RBF and Nt = 300, N = 200 and
Smax = 100, in the case of TPS RBF.




The effect of the number of time steps on the accuracy of the numerical solutions can be visual-
ized in Figure 3. As can be noticed, Cubic RBF performs better than TPS RBF. TPS error
decreases as the time step (= T/Nt) decreases or the number of time steps increase; however, if
the number of time steps gets lower than a limiting value (300), divergence occurs.. On the other
hand, cubic RBF lead to smaller errors and requires less times steps and presents a point of min-
imum error. Thus, as a general rule, TPS RBF should be used with larger number of time steps
or smaller time steps, while the optimal number of time steps for cubic RBF can be obtained by
starting with a large number of times steps and reducing it by increasing the time step and
observing the solution behavior.

Figure 4 shows the numerical solution behavior of both RB functions, as affected by the number
of grid points or, inversely, the stock value mesh size. As can be noticed, TPS RBF diverges when
the number of grid points exceeds 200; interestingly enough, at this grid point number, it reach-
es the smallest relative error. Cubic RBF behave excellently well, with very small relative option
value errors. Proper choice of Cubic RBF involves checking the solution consistency at a larger
number of grid points. Thus, Figure 4 allows recommending the use of the maximum acceptable
value of grid points, as a general rule since it leads to accurate values. In the investigated litera-
ture, there is no known technigue for finding the minimum error point for the RBF method.

200680 TPS Eé%vefg&nma
Area \

-
~e-._g

(%)

e 1 (100G RBF
- TPS RBF

0 100 200 300 400 GO0 S00 7OC 800 900 1000 1100

Mumber of ime steps, Nt
Figure 3. Relative errors of TPS and Cubic RBF call option values at the exercise option value
(%) as affected by the number of time steps, Nt. E=50,T=1, 6 =20%, r = 5%; N = 112, Sax
= 80 for cubic RBF and N = 200 and S5, = 100, in the case of TPS RBF.
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Figure 4. Relative errors of TPS and Cubic RBF call option values at the exercise option value
(%) as affected by the number of grid points, N. E=50,T=1, 6=20%, r= 5%; Nt = 100, Spax
= 80 for cubic RBF and Nt = 300 and Sp;, = 100, in the case of TPS RBF.
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Figure 5 shows that there is a value of S, that minimizes the relative error of the numerical

solutions through any of the RB functions; however low values can increase the error or lead to
divergence. So, the numerical results recommend using Spx 0 2E.

Figure 5. Relative error at exercise option value (%) vs. Maximum Stock Value, S«




Conclusions

A methodology based on the Radial Basis Functions is presented and shown to be very effective
and reliable to solve the most important finance engineering equation, that is, Black-Scholes
equation.

Based on the research results, the following conclusions can be stated:

1 - In the context of the RBF method, the diffusional method and the classical form of the BS
equation lead to the same resulls and can be used interchangeably.

2 - Both TPS and Cubic radial functions furnish accurate results to the BS equation. There is
no definitive evidence of sensitive differences between both methods.

3 ~ Excellent results can be obtained through:
a - Using an integration method with 8 > 0,5

b - Using a high number of time steps in the case of the TPS RBF and the lowest con-
vergent number for Cubic RBF.

¢ - Using the minimum convergent value for the stock mesh size for both RBF.

d - Using a maximum value for the stock price approximately equal fo two times the
exercise price

Thus, the methodology herein presented should be of help to the effective use of the RBF method
to the solution of Black and Scholes equation.
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