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Resumo

Apresenta-se, neste trabalho, um método numérico adaptatwo no tempo, que pode ser
-usado para resolver, de modo eficiente, modelos econdmicos representados por equa-
;gees diferenciais ordindrias. O método tem por base um esquema (resolvedor) cor
preditor do tipo Adams-Bashforth de segunda ordem, seguido por um predltor exph-
o de Euler. A partir de equacdes diferenciais padrdes, rigidas e nao-r 1das, efetua-
m-se uma andlise de desempenho e comparacGes entre o método proposto ¢ outros:
ocedimentos de avango no tempo que empregam os preditores de Adams«Bashforth
ou Euler e respectivos corretores. Dois modelos econdmicos cldssicos foram tambem’
.simulados pelo modelo proposto; mostra-se a ordem de grandeza dos. passos de temg 0
utilizados nos processos de simulag@o de ambos os modelos. Mostra-se, entdo, que 0
método adaptativo proposto envolvendo os esquemas de Ad s-Bashforth / Euler
_explicito é um resolvedor excelente de equagdes diferen s e pode ser
';usad@ efetivamente na simulagio de modelos econbmicos dmamicos

7~5Palawras—chave Problemas Economlcos Dinidmicos- Métodos Adaptatlvosv
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Abstract

This work presents a numerical time adaptive method that can
_solve dynamic economic models represented by ordinary different |
‘method consists in a second-order Adams-Bashforth predictor model followed by an
explicit Euler predictor. Benchmark stiff and non-stiff ordinary differential equatlons
~were used for performance analysis and comparison of the proposed method with
,7:{)ther time stepping procedures, that employ either Adams-B ashforth or Euler predlctarsf "
~and associated correctors. Two classical dynamlc economic models were solved by
‘means of the proposed model and the order of magnitude of time steps used in the
é;smu}at;on process is shown. The proposed Adams-Bashforth / Explicit Euler adaptwe
.scheme is thus shown to be an excel}ent ordmary differential equation solver to be
'aussd in dynamic economic model simulation.

ed eff" c1ently to
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1. Introduction

conomic models are called static, when they refer to equilibrium situations,

or dynamic, when they refer to situations that change with time (Weber,

1986). A model is represented by equations that correlate endogenous and
exogenous variables. Rather complex models exist for analyzing business cycles
{Danthine & Donaldson, 1995), derivatives in financial engineering (Banks, 1994;
Wilmott et al., 1995; Wilmott, 1998) and dynamic optimization of economic
problems (Judd, 1989, 1991; Benveniste & Scheinkman, 1979). The solution to
the equations associated to the models can be found either analytically or
numerically; analytical solutions are usually available only for simpler problems.
The more complex models involve systems of partial differential equations (PDE)
that can be solved by either finite difference (Wilmott, 1995, 1998) or weighted
residual methods (Judd, 1991). Several numerical methods transform the partial
differential equations into a set of ordinary differential equations (ODE) that must
be solved efficiently. Although several techniques are available for solving ODEs,
they are usually complex to handle and difficult to implement to solve PDEs. This
work is concerned with the presentation of simple, effective and accurate ODE
solvers. An ODE solver is said to be adaptive when, by means of internal error
control, its time step can be automatically increased and, simultaneously, it allows
the user to define the desired accuracy.

Gresho et al. (1980) proposed an implicit adaptive time integrator based on a
second-order accurate Adams-Bashforth predictor (ABP) and the trapezoid rule
as the corrector. The ABP requires the evaluation of rates of change that are obtained
through successive applications of the trapezoid rule. The corrector step uses again
the trapezoid rule which is non-dissipative, completely stable and second-order
accurate. Bixler (1989) changed Gresho et al’s integrator by incorporating three
modifications: 1. the one leg-twin form of the trapezoid rule replaced the trapezoid
rule as the corrector, leading to a more accurate local time truncations error estimate;
2. a more stable predictor was obtained by changing the expression for obtaining
rates of change and 3. the formula used for predicting time-step size was redressed
to match the new corrector.

The specific objective of this work is to present a numerical time adaptive procedure
to solve dynamic economic models represented by linear or non-linear ordinary
differential equations and to serve as an efficient ODE solver to be coupled to
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PDE solvers. The objective is centered towards further optimizing both GLS and
Bixler’s schemes so as to reach a more efficient algorithm. The efficiency of the
proposed method was checked by means of benchmark solutions and comparisons

with the previous schemes and by solving two dynamic economic models.

2. Methodology - time adaptive schemes

2.1 Bixler’s implicit adaptive time integration
scheme: - B scheme

Bixler (1989) modified Gresho et al’s (1980) time integration scheme (GLS
scheme) by incorporating modifications to enhance accuracy and stability. Given
the first order differential equation (readily expandable to a system of ordinary
differential equations)

y="1f(y.0) @®

Bixler’s scheme (B scheme) consists basically in:
* Using the second-order-accurate Adams-Bashforth as predictor:
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where the superscript p refers to predicted value and the derivatives (rates of

change) at time planes n-1and n; ¥, , and ¥ are respectively approximated by:
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and the trapezoid rule:
5
Vo= ¥, = Vo) = Vo
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* Using the one-leg twin of the trapezoid rule as corrector:

},U'rf B yn " f{ .yfw{ + },n I*erI + tn}
? k]

At 2 ©)
* Predicting the time step size by means of the expression:
~ .1,
e 3
Ai‘ n4d = Atn T (6)
d nbl

where ¢ is a target local time-truncation error and d,., is the distance between the

corrected and exact solution and is defined by

0.25
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Taking the superscript E to refer to the exact solution, the local time truncation
error estimate relative to equation (2) can be obtained by means of Taylor series
expansion as (Gresho et al., 1980)

i
Yo = You = 5 ALT. 0+ O(AL) @)

Similarly, the local truncation error for equation (5) is given by (Bixler, 1989):

O
fha TY =

Joutl i)

ACT(y.0) + O(AtY) )

Combination of the above two equations (8-9) allows obtaining the time step size
by equation (6). It should be noted that the B scheme requires solutions at three
preceding time steps. Adaptive time stepping can start at the fourth step.
Furthermore, a norm such as the root means-square should replace the absolute
norm in equations (6-7) when a system of equations is to be solved.
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2.2 GLS - Euler integration formulas: GLS-E scheme

GLS (Gresho et al, 1980) suggested a scheme using the explicit forward Euler
(FE) as the predictor and, as the corrector, the implicit backward Euler (BE),
respectively given by

Vo=, ATy ) =y, + ALY, and y =y ALT(Y, ) A0)

Furthermore, v in equation (10) was suggested to be obtained from the inverted
form of the BE scheme:

Yasr — /o
o Yot T (11)

GLS showed that the local truncation errors for the two schemes are, respectively:

. ACT (y.1) \
B B I T CAS
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The last two equations lead directly to the expression for the next step size:

/ \ I ) i .
Atniﬁ = [_X{ i T_‘;M/T } Whefe dn'é} = “y (ynﬂ - ygwl) + O(Aiﬂ) (13)

For both the second and first-order schemes, GLS recommend the one-step Newton-
Raphson method to solve the implicit correctors. Following GLS, the GLS-Euler
scheme, because of its dissipative nature, should be used only as a means for
obtaining steady-state solutions.
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2.3 Candidate schemes

Several time adaptive integration techniques were investigated in a search for
adequate methods for solving dynamic economic problems. The following methods
were tested:

1. Second order scheme: AB-E scheme. Instead of using the trapezoid rule (GLS)

or the one-leg twin of the trapezoid rule (Bixler), the explicit Euler equation
was checked as a corrector for Adams-Bashforth method. Thus, the method
consisted of Adams-Bashforth predictor associated to the explicit Euler
corrector (the time step size was obtained from equation (6)):

yn%% = yn + AE nf(y:n ) (14)

. Second order scheme: - modified-GLS (MGLS). Here, instead of using

equation(5), the explicit form of the trapezoid rule was used as corrector. No
use was made of the Newton-Raphson method. The rest of the procedures
follows Bixler’s scheme.

- First order schemes: Two schemes were tested: a) GLS-E and b) EE: - Fully

explicit Euler schemes, which consists in using the FE scheme as predictor,
equation(10), and the explicit form of the Euler given by equation (14).

. Mixed first and second-order scheme:- Modified Euler - Trapezoid rule (MET).

Another possibility is to employ a modified Euler predictor-corrector method,
MET, which consists in using the FE scheme as predictor and the trapezoid
rule as the corrector, in the form:

Yo =Y, + i— A [E, + 7] (15)

The trapezoid rule is a second order scheme and the FE is first order. However,
the resulting predictor-corrector method is second-order (Hoffman, 1992), when
applied to ordinary linear differential equations. Because the predictor and corrector
do not possess the same order, an expression for predicting the time step is not
readily available.
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By assuming that At and Ay*=\y ., — y!.,| are the same for both the GLS-E
and Bixler’s methods, it can be concluded that as long as Ay* > 2.14x10 the step
sizes predicted by Bixler’s method are larger than the ones predicted by the GLS-
E method. Consequently, based on this argument, and the order of the candidate
schemes, it can be concluded that any of the time step predicting equations could
be used with any of the candidate schemes. However, in the following test problem,
the time step sizes for the B, AB-E, MGLS and MET schemes were evaluated by
means of equation (6) while the step sizes for the first order schemes, GLS-E and
E-E, were evaluated by means of equation (13).

3. Results

3.1 Stiff and non-stiff problems

Here Bixler’s (1989) test problem is used: y= -y*. The relevant behavior of the
time integrators is illustrated by considering values of k=1 and 2, which provide
stiff and non-stiff responses, respectively. In both cases, the initial condition was
taken to be y = 1 at t = 0 and the initial time step was taken to be At = 107. Some
of the proposed schemes could, in principle, be discarded based on simple error
analysis and final conclusions by both Bixler (1989) and Gresho et al. (1980).
However, solvers for linear and non-linear problems can behave differently
according to boundary values and to the associated parameters (Hoffman, 1992)
and, thus, the results to be presented may be of value for eventual comparison
purposes.

Figure 1 shows numerical results for the equation y = —Yy. It can be observed
that:

« Att=20, the exact solution is approximately 2.06 x 10 which can be considered,
for most purposes, close enough to the asymptotic solution (y=0).

« The best overall performance was obtained by means of Bixler’s (B) scheme.

However, as mentioned before, B scheme is implicit.
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Figure L. Time-step sizes and errors for different schemes and error levels, when solving Y=—y.

* The MGLS is more effective when higher accuracy is desired, as compared to
the AB-E scheme; however, if the expected error is € = 107, the AB-E scheme
is much more efficient. The GLS-E and EE schemes behaved almost identically
in the time range investigated (the GLS-E scheme is more accurate).

* The MET scheme showed a performance better than the first-order and inferior
to the AB-E schemes; it should be mentioned that the MET showed oscillatory
results for Jonger simulation times.

Figure 2 shows numerical results for the equation y=-y? . It can be observed
that:

* When high accuracy is desired, in the present case € = 10, the first order
schemes (GLS-E and EE) and the MET scheme were rather inefficient as
compared to the B, AB-E and MGLS schemes.
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* Again, the best overall performance was obtained by means of Bixler’s scheme;
nevertheless, the AB-E and MGLS schemes presented excellent performance.

» The MET scheme is rather slow at higher specified €; however it remains an
alternative when compared to the B scheme, due to its simplicity.

Thus, based on the previous stiff and non-stiff examples, it can be said that the
Adams-Bashforth method followed by either the explicit forward Euler or the
explicit trapezoid rule (AB-E and MGLS) constitute acceptable alternatives to
the implicit Bixler and GLS schemes. Although less efficient, the EE and MET
schemes should be considered as eventual explicit substitutes to the just cited
schemes. The implicit GLS scheme, since it is implicit, can be replaced by the
explicit counterpart, the EE scheme.

Based on the just exposed reasoning and data and on the fact that it is fully explicit
(8 =0), the AB-E scheme will be applied to solve two economic models and the
results will be compared with analytical solution.
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Figure 2. Time-step sizes and errors for different schemes and error levels, when solving y=-y*.
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3.2 Application of the AB-E scheme to simple
macroeconomic problems

Domar’s macro model - Domar’s model expresses the relationship among income,
saving and investment and is given by

S(t) = ay(t) and I(t) = B—g—‘; (16)

where S is savings, I is investment, y is income and all of these endogenous
variables are functions of time, t. The parameters o >0 and B> 0.The initial
condition is y(0) = ¥, Since S(t) = I(t) equations (16) lead to

&y o
dt B~ an

AT

that has the analytical solution y = y ¢

Figure 3 shows the solutions obtained by means of the AB-E method and the
analytical solution. The AB-E method leads to a quasi-exact solution (maximum
€ =0.5%), and allows the time-step size to increase so that the time final value is
reached in 440 steps whereas Euler’s scheme behaves much more inefficiently,
requiring 1.8x10° steps.
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Figure 3. Time-step sizes and percent relative error using AB-E scheme for the Domar’s macromodel.
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Domar’s debt model - Domar’s debt model expresses the relationship between
the national income and the national debt and is represented by:

dD dy
dt ) and dt B

(18)
where D is the national debt, y is the national income and these endogenous
variables are functions of time, t. The parameters o >0 and >0 .The initial
conditions are y(0)=y, and D(0)=D, . The analytical solution to this problem is

given by

o1 )
D(t) = 5 aft” +ay,t+D, and y(t) =Pt+y, 19)

Figure 4 shows the solution obtained by means of AB-E scheme. The relative
difference between analytical and numerical solutions did not exceed 1.5x10%% .
We can note that the AB-E allows the time-step size to increase in such a way that
at 7 time-steps it increases by a factor of 5x 10%, starting from 1x10°* and reaching
the value of 500.
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Figure 4. Time-step sizes and percent relative error using AB-E scheme for the Domar’s debt model.
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4. conclusions

This work presents a numerical time adaptive method based on Adams-
Bashforth(Predictor) and Euler (Corrector) to solve dynamic economic models
represented by ordinary differential equations. A performance analysis of this
method was made and compared with other time stepping procedures. Two classical
dynamic economic. models are solved utilizing the proposed method and the
results are compared with analytical solutions.
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