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Abstract

Mathematical modeling of the famous Black and Scholes equation has become essential tools in
the financial industry. However, the numerical solution of the various forms of Black and Scholes
equation has been a long standing problem in spite of the many available numerical methods. In
this paper, we present a comparison between a diffusional finite-difference method and the
meshless method based on thin-plate and cubic radial basis functions (RBF). The analysis
included the effects of the time integration method, mesh size, time step, maximum simulated
stock value, volatility and interest rate on the stability and accuracy of solutions of call options.
The results show that the finite difference solutions are very stable but much less accurate than
the ones obtained by means of the RBF method. The RBF methods, although subject to diver-
gence, are very accurate and simple to implement.

Key-words. Black-Scholes, financial engineering, radial basis functions, diffusional method.
finite difference, numerical methods.

Comparacdo entre os Métodos Difusional de Diferencas Finitas e Funcgoes de Base
Radial quando aplicados & Engenharia Financeira

Resumo

Amodelagem matematica da famosa equacéo de Black-Scholes tornou-se um instrumento indis-
pensavel para a industria financeira. Entretanto, a solugdo numeérica das varias formas da
equacao de Black e Scholes se transformou num problema permanente apesar dos muitos
__métodos numéricos disponiveis. Neste artigo, apresenta-se uma comparacao entre um método
difusional acoplado a diferencas finitas e 0 método que nao requer malhas, baseado nas fungbes
de base radial (RBF),Thin-Plate Spline e cubica. A analise incluiu os efeitos do método de inte-
gracao temporal, tamanho de malha, valor méximo simulado da acéo, volatilidade e taxa de juros

sobre a acurécia e estabilidade das solucées de opcdes de compra. Os resultados mostram que
as solucdes por diferencas finitas sdo muito estaveis, mas muito menos acuradas que as obii-

 das pelo método RBF. Este método, embora suijeito a divergéncias, é muito acurado e facil de
ser implementado.




Palavras-chave. Black-Scholes, engenharia financeira, fungdes de base radial, método difu-
sional, diferencas finitas, métodos numeéricos.

Introduction

The pioneering work of Black and Scholes (1973), BS, started the serious study of the theory of
option pricing. All further advances in this field have been extensions and refinements of the orig-
inal idea expressed in that paper (MEYER & JOHNSON, 2002). The Black-Scholes option-pric-
ing model is used to determine the expected value of an option. It provides insight into the valu-
ation of debt relative to equity (HULL, 1989; SIEGEL et al., 1992). Mathematical modeling and
simulation based on the famous Black and Scholes equation (or BS equation) have become
indispensable tools in the financial industry. It is well known that banks, brokerage houses and
investors and their consulting services spend countless hours every day and night to simulate
and predict the movement of prices for financial assets like stocks, options and bonds. Much of
the mathematics employed in this field, particularly in academic research, is highly sophisticated
and spans the fields of analysis, probability, statistics, differential equations and, last but not
least, numerical analysis (COX & RUBINSTEIN, 1985; MEYER, 1998; LEENTVAAR, 2003;
MUCHMORE et al., 2005; CRETIEN, 2006).

This work aims to discuss highly accurate numerical methods to be used to solve the BS equa-
tion. Although only European call options are analyzed, the main reason for the work is to pro-
pose general numerical models for many different types of options. In particular, American
options are not solvable in an analytic sense (MEYER & JOHNSON, 2002). If a numerical
method works for European style option, then this should the basis to get the solution for an
American option. Another issue is "implied volatility". Volatility is a quantitative expression for the
randomness in the market. From newspapers or stock exchanges, the volatility of asset prices in
the future is not known, so it has to be estimated. If the model leads to accurate values for the
option price, it is possible to calculate the volatility, which is the only unknown parameter in the
Black-Scholes equation.

Most of the financial engineering (area that deals with creative application of financial theory and
instruments) cases require numerical methods to compute an approximate solution (BARUCCI
et al., 1996; GARCIA-OLIVARES, 2003; ZHANG, 2005). Itis very difficult to generate stable and
accurate solutions to Black-Scholes equations due to the discontinuity of the pay-off function
around the exercise price (KOC et al., 2003; CONT & VOLTCHKOVA, 2005). Thus, many numer-
ical methods have been introduced to model accurately the interaction between advective and
diffusive behaviors present in the different modified forms of the BS equation. Finite difference
and finite element solutions of the advection-diffusion equation, a general statement of the BS
equation, present numerical problems of oscillations and damping (BOZTOSUN & CHARAFI,
2002: HOFFMAN, 1992; MURPHY & PRENTER, 1985; WILMOTT, 1998; WILMOTT et al., 1995;
LEE et al.,, 1987; ZIENKIEWICZ & TAYLOR, 1991). However, these traditional methods have
numerical problems of oscillations and damping and require the mesh generation procedures
(KOC et al., 2003).

The mesh generation problem over irregularly shaped domains is often in.excess of 70% of the
total computational cost (BROWN et al., 2005). Thus, meshless methods such as those using
Radial Basis Functions (RBFs) have, therefore and recently, attracted much attention of the engi-
neering community and RBFs have become an important tool in scientific computing (KARA-




GEORGHIS, 2006). Radial basis function (RBF) methods have shown the potential to be a uni-
versal grid-free method for the numerical solution of partial differential equations (SARRA, 2004).
In this work, we consider the use of the thin plate spline radial basis function (TPS RBF), the
cubic radial basis function (Cubic RBF) and a literature claimed accurate finite difference method-
ology. In their work with radial basis functions, RBF, Boztosun and Charafi (2002) reason on the
fact that previous analyses have shown that the multiquadrics (MQ) and TPS give the most accu-
rate results for scattered data approximations. However, these authors point that the accuracy of
the MQ method depends on a shape parameter and as yet there is no mathematical theory about
how to choose its optimal value. Hence, most applications of the MQ use experimental tuning
parameters or expensive optimization techniques to evaluate the optimum shape parameter,
while the TPS method gives good agreement without requiring such additional parameters and
based on sound mathematical theory. On the other hand, Boztosun and Charafi (2002) have not
analyzed the use of both Cubic RBF and TPS RBF to solve the BS equation.

The diffusional method was proposed by Fortes (1997) and applied to the solutions of several
benchmark problems (FORTES & FERREIRA, 1998 and 1999) and is based on transforming
original hyperbolic parabolic partial differential equation into a parabolic partial differential equa-
tion.

A recent work, Marques and Fortes (2007) analyzed several aspects of the solution of the diffu-
sional and non-diffusional forms of the BS equation by means of TPS and Cubic RBF. Their main
conclusions were:

@ In the context of the RBF method, the diffusional method and the classical form of the
BS equation lead to the same results and can be used interchangeably.
& Both TPS and Cubic radial functions fumish accurate results to the BS equation. There
is no definitive evidence of sensitive differences between both methods.

& Excellent results can be obtained through:
] Using an integration method with ? ? 0,5 (in other words, use an implicit proce
dure including and between the Crank-Nicolson and Euler fully implicit scheme);

[ Using a high number of time steps in the case of the TPS RBF and the lowest
convergent number for Cubic RBF;

] Using the minimum convergent value for the stock mesh size for both RBF. In
other words, one should simulate the call option situation, decrease the mesh size and
use the smallest mesh size that allows convergence.

® Using a maximum value for the stock price approximately equal to two times the
exercise price

To establish the full performance of the RBF method, more stringent numerical analyses are
required then the ones effectuated by Marques and Fortes (2007). Similarly, up to present, no
assessment has been made on the accuracy of the diffusional finite difference method under fluc-
tuations of interest rate and volatility. More specifically this paper is concerned with:

1. Solving and comparing the diffusional finite difference and the RBF methods as to their
ability to solve the BS equation, with respect to accuracy and solution stability.




2. Effectuating parametric sensitivity analyses by investigating the effect of variations of
interest rate and volatility on the accuracy of the numerical methods.

Methodology

The diffusional method for solving convection-diffusion equation
The transient one-dimensional convection-diffusion equation can be written in the non-conserva-
tive form as
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where *v is the dependent variable, and the parameters Q, u and T may depend on *v, tand S.
Fortes (1997) and Fortes & Ferreira (1999) showed that the above equation can be put into the
following diffusional form
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If one assumes u/T to be constant or an average within the integration range, which is from 0 to
L, then the above equation can be written in terms of the global Peclet number, Pe=u/T, as,
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The above equation (3) is in an excellent form, suited to be solved by any numerical technique,
and more particularly, by the finite difference method.

The finite difference diffusional PMGV (Prevailing Main Grid Value) scheme

Consider the discretization diagram shown in Fig. 1.
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Figure 1. The discretization nodes and respective spatial coordinates.

If a central difference approximation is used and uniform grid spacing is assumed, then the dif-
fusive term of Eq. {3) can be writlen as
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where h = AS and the subscript i + % indicates an evaluation at the point midway x; and X4
and the subscript i - ¥ is similarly defined. Thus, we can write
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Again, by assuming constant local properties, replacing the appropriate derivatives by central
difference approximations, and rearranging, we obtain
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The source term can be approximated by applying the log-mean difference concept to the
exponential term multiplving Q. Thus
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The transient term is approximated by the classical finite difference technique with the log-
mean difference concept being applied to the exponential term
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where n stands for time plane. By making use of the mean value theorem, Egs. (6, 7 and 8)
can be substituted into Eq. (3), resulting in a set of algebraic equations whose ith-equation is
given by
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where 0 <= 0 <=1,
Simple algebraic manipulations and the use of the& parameter lead to the coefficients in Table 1.

After spatial and one-step time discretization of the above transient convection-diffusion equa-
tion, one arrives at the classical approximate equation,
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where 0 <= § <=1; C, K and D are, respectively, the capacitance, the conductivity or stiffness
matrices and the force vector, and n is the time level. If the problem at hand is one-dimensional,
if use is made of the terminclogy such that as, bs and cs refer to the steady state terms, while at,
bt and ct refer to the transient terms, then equation {10) can be rewritten in the form
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where the terms defining the coefficients are given in Table 1. By means of an integration of the
transient term assuming that only the main grid point value matters (the i_th nodal value), as is
done in the Finite Volume Method (PATANKAR, 1980), then one arrives at only a by coefficient,

that is

b =a +b+c, a =0 and ¢ =0

¥

(12)

This new formulation has been called the Prevailing Main Grid Value (PMGV) scheme and can
be thus written as:
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The PMGV scheme shows the property that if an explicit scheme is used, the capacitance matrix
becomes diagonalized and no solver is required for obtaining the new V values.




Table 1 - Coefficients for the transient one-dimensional diffusional scheme
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PMGV solution methodology for Black-Scholes Equation for Call Options
The classical form of the basic Black-Scholes equation, BS, is (WILMOTT, 1998):
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Where V,t,&, S and r stand, respectively, for option value (price), time, volatility, asset {underly-
ing security) price (a stochastic variabl e) and interest rate
In this work, the numerical calculations involved solving the BS equation with a call option with

the following payoff function, that is, the value of the call option at expiry (t =T), in a neutral-risk
world:

Payoff (S, T) = max {S-E, 0) {15)

where E is the option exercise or strike value, that is, its value att = T. The respective boundary
conditions are:

V(G, T) =0 V{m,r} = S-Ee""fT*r) e

One should note that this is not an initial value problem, since the payoff function is given att =
T. In order to make it an initial boundary value problem let us make t = T - t, so that the above
equation becomes
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In order to put this last equation in the form expressed by equation {1}, use is made of the iden-

tity
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in equation {17}, so that one obtains
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where one can easily identify

2
u=?-rp; r-lo’s?;  Q=1v  Pe-= 'j}S
Where AS can, now, be identified as a characteristic length (spot market price and, in this
case, the mesh size). The initial and boundary conditions are:

V(S, 0) = Payoff(S,0) = Max (S-E, 0); V(0,7)=0;V(x,1)=S-Ee"
21)

Sensitivity and parametric analysis

Equation (20) depicts clearly the importance of sensitivity parametric analysis. In this work, sen-
sitivity analysis is defined as an analysis around optimized (minimized or maximized) function
values, in this case, option values. On the other hand, parametric analysis is defined as the
analysis made by changing the important parameters; in this work, the interest rate and volatili-

ty.

In countries like Brazil, large risk-free interest rates may occur. Under international economic
crash imminent conditions, large volatility variations are probable. U, and Pe can be highly
affected by these changes and thus, as well, the solutions might be very different.

For the above mentioned reasons, simulations were undertaken for different risk-free interest
rates and for different volatilities.

Radial basis functions applied to the original Black-Scholes equation

The idea behind the RBF method is to use linear translate combinations of a basis function $(r)
of one variable, expanded about given scattered 'data centers' to approximate an unknown func-
tion §, eR’,i=1..,N by
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where rj = S-5_ is the Euclidean norm and are the coefficients to be determined. Usual radial
basis functions are defined by (KOC et al., 2003):

Thin-Plate Spline, TPS : ¢, )=r* log(; ) (23)
Multiquadrics, MQ: ¢, )= Jc* +r/ (24)
Cubic : ¢, )=r (25)

Gaussian :tt;(g )m e (26)

In this work, only cubic and TPS RBF will be used, due to their simplicity and proven accuracy
for other types of problems and the difficulty associated to choosing good values for the shape
parameter ¢, which depends on the problem type (BOZTOSUN and CHARAFI, 2002).

The original Black-Scholes equation shown above in equation (19) can be discretized using the
q) -weighted method:
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So, equation {19) becomes:
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Defining V(S,t") = V" and V(81" + At)= V™" then the previous equation can be written in
the form:
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where o = 84, B = (1 - 8)4L, V= -:~ and ¥-= :««— And, now, by defining two new operators, H.
and H.
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equation (14) becomes:

M
D AH(S,) = fo’H H(8y) fori=1.N (32)
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Equation (32) generates a system of linear equations, which can be solved to obtain the

unknowns, Vj””, from the known values of ¥n at a previous time step. Then they are trans-
formed to the V(S, t) by equation (22).

Analytical solution

The analytical solution for the present value of a call option is given by:

V(S,T-t)=S-N(d,)-E-N(d,) e (33)
where

fn(:)+it+ G’ }(T t)

d,(8,T-t)= 5 {34)
A ) o ATt
d,8.T-1)=d,(8.T-t)-oc VT-t (35)
and N is the cumuliative normal probability density function,
& g
N(x) = @r) 2 [e 2" du+ % ‘ (36)
2
The instantanecus Payoff function, M, is given by
Tt} {11
M(S, T~ 1)) == [s-Ee" ™ if S-Ee 20 (37)
1 0, otherwise

Results and Discussion

The results to be shown were obtained via Mathcad, a symbolic mathematical programming lan-
guage and solver. Option value or price or premium is defined as the call option value that an
option buyer pays the seller. The reference data used in the simulation studies were:




Exercise value = E = 50

Volatility = = 20%

Riskless interest rate = r = 5%

Expiry time = T = 1

Present exact analytical call option value = 5.225

L2 2 X N

The total number of stock price meshes is N and the mesh size, S, is defined by S = S/N. The
total number of time steps is Nt, while the time step, t, is defined by t= T/Nt.

In this work, numerical option value relative errors refer to option prediction values at the strike
{(exercise) price value (S = E = 50) and are defined as:

Numerical option value - Analytical solution value
Analytical solution value

(%)= %« 100% (38)

One of the boundary conditions, typical in BS problems, requires specifying V(S, t) at S =?; prac-
tical numerical solutions require that this value should be reduced and, the larger the allowable
reduction, the better the efficiency of the numerical solution, due to decreased equation matrix
size; thus, the practical maximum simulated value for S was called Smax.

The accuracy of finite difference solutions of BS equations can be heavily improved if the diffu-
sional method substitutes the classical approach (FORTES et al, 2005). However, in a previous
work (MARQUES and FORTES, 2007), when RBFs were considered, the diffusional and the
classical forms of Black-Scholes equation led to the same results. Thus, this fact will not be
shown in the figures to come.

In this work, the diffusional finite difference form of the BS equation is considered and, this
approach was not considered previously. As shown in Figure 1, excellent solutions can be
obtained by the PMGV technique (the results of the RBF method are not shown, because they
do agree with the PMGV solution. Figure 1 was obtained with Nt =100 time steps, N =112 mesh-
es and S = 0.714, with an upper value of S equal to 80. With these parameters, the cubic RBF
led to an option price relative error of 0.00039% at the exercise option value (E=50), while in the
case of the TPS RBF, the relative error was 0.019%. The diffusional finite difference method led
to an error of 0.0346%. Thus, under controlled and optimal conditions, all methods led to very
accurate solutions.
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FIGURE 1. Cubic RBF and PMGV simulated values of a call option, V, compared against the
analytical solution and payoff function values; E = 50, T=1, =20%,r=5%.

Figure 2 shows the effect of the integration scheme; the ?-variation was performed based on Nt
=100, N = 112, Smax = 80 for cubic RBF and Nt = 300, N = 200 and Smax = 100, in the case
of TPS RBF. As can be noted, it is advisable to use implicit schemes with ? ? 0.5, as a general
rule: smaller ? values lead to divergence. Although the choice of ? can affect the accuracy of
numerical solutions, Figure 2 allows affirming that a good choice is to use a 7 value slightly larg-
er than the one that leads to divergence. Even higher values of ? still provide highly accurate
solutions. One can notice that Cubic RBF is more efficient than TPS RBF, since cubic RBF
require less time steps, a smaller Smax and less meshes for approximately similar error levels.

Changes in S, tand Smax, that is, the other simulation parameters, did not affect the just men-
fioned conclusions.

On the other hand, and very differently from Marques and Fortes' (2007) results, the PMGV
scheme led to stable solutions, at the cost of much less accurate results (relative error slightly
less than 1%). This radically differs from the very accurate errors obtained with the RBF meth-
ods. Thus, the PMGVY scheme showed itself to be very stable and not to show a large divergence
region as the other two methods, with respect to the integration method.
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FIGURE 2. Relative errors of cubic and TPS RBF as affected by the integration ?-value. E =50,
T=1, =20%,r=5%;Nt=100, N =112, Smax = 80 for cubic RBF and Nt = 300, N = 200 and
Smax = 100, in the case of TPS RBF.

The effect of the number of time steps on the accuracy of the numerical solutions can be visual-
ized in Figure 3. Again, the PMGV scheme shows a stable performance at the cost of very low
accuracy, as compared to the RBF methods. As can be noticed, Cubic RBF performs better than
TPS RBF. TPS error decreases as the time step (= T/Nt) decreases or the number of ime steps
increase: however, if the number of time steps gets lower than a limiting value (300), divergence
occurs. On the other hand, cubic RBF lead to smaller errors and requires less times steps and
presents a point of minimum error. Thus, as a general rule, TPS RBF should be used with larg-
er number of time steps or smaller time steps, while the optimal number of time steps for cubic
RBF can be obtained by starting with a large number of times steps and reducing it by increas-
ing the time step and observing the solution behavior.




Figure 4 shows the numerical solution behavior of both RB functions, as affected by the number
of grid points or, inversely, the stock value mesh size. As can be noticed, TPS RBF diverges when
the number of grid points exceeds 200; interestingly enough, at this grid point number, it reach-
es the smallest relative error. Cubic RBF behave excellently well, with very small relative option
value errors. Proper choice of Cubic RBF involves checking the solution consistency at a larger
number of grid points. Thus, Figure 4 allows recommending the use of the maximum acceptable
value of grid points, as a general rule since it leads to accurate values. In the investigated litera-
ture, there is no known technique for finding the minimum error point for the RBF method. And,
again, the PMGV scheme led to very high error levels. Thus, if one is interested in accuracy, the
PMGV scheme is not advisable, if used under conditions far from the optimum.
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FIGURE 3. Relative errors of TPS and Cubic RBF call option values at the exercise option value
(%) as affected by the number of time steps, Nt. E=50,T=1, =20%,r=5%: N= 112, Smax

= 80 for cubic RBF and N = 200 and Sy,5, = 100, in the case of TPS RBF.
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FIGURE 4. Relative errors of TPS and Cubic RBF call option values at the exercise option value
(%) as affected by the number of grid points, N. E=50, T=1, =20%, r=5%; Nt =100, Smax

= 80 for cubic RBF and Nt = 300 and Sp,44 = 100, in the case of TPS RBF.




Figure 5 shows that there is a value of Sy that minimizes the relative error of the numerical

solutions through any of the RB functions; however low values can increase the error or lead to
divergence. So, the numerical resFIGURE 5. Relative error at exercise option value (%) vs.
Maximum Stock Value, Smax.
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FIGURE 5. Relative error at exercise option value (%) vs. Maximum Stock Value, Smax.

Parametric sensitivity analysis
Figure 6 shows the effect of the volatility value on the accuracy of the numerical methods. One
can notice that, if 1% is defined as an acceptable error level:

@ The TPS RBF presents convergence and acceptable accuracy only for  values up to
20%.

' The PMGV scheme presents acceptable accuracy in the 20-40% -range.

® The Cubic RBF presents the largest acceptable range of values: 1-50%.

These -parameter effects can also be visualized in Figure 7.

Figure 8 shows the effect of the risk-free interest rate on the accuracy of the numerical methods.
One can notice that, if 1% is defined as an acceptable error level:

] The TPS RBF presents convergence and acceptable accuracy range of r values:1-30%
: from this point, errors tend to increase exponentially.

@ The PMGV scheme presents excellent accuracy in the 1-10% r-range.

] The Cubic RBF and the PMGV scheme present the large acceptable range of r values:
1-40%.

FThese r-parameter effects can also be visualized in Figure 9.

Thus, it has been shown that each Black-Scholes solution should be optimized for the given
expected values of volatility and risk-free interest rate, due to the sensitivity of the numerical
methods. The simulations herein performed were based on optimal values discussed in Figure
1.
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FIGURE 6. Effect of the volatility value on the accuracy of the numerical methods.
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Conclusions

A study of optimized numerical solutions of Black-Scholes equation is presented in detail. The
work of Marques and Fortes (2007) was extended so as to include results of the diffusional finite
difference method. The PMGV scheme is shown to lead to non-accurate results, if applied away
from its optimum simulation parameters: S, t, Smax; it is also less sensitive to divergence and
allows working in a broader range than the RBF methods. On the other hand, RBFs allow much
more accurate solutions, but are subject to divergence. TPS RBF is shown to be particularly sen-
sitive do divergence; when it does not diverge, the associated solutions are accurate.

Based on the parametric sensitivity analysis, the following conclusions can be stated:

1. TPS RBF should be well calibrated for given volatility and interest rate values; otherwise,
small changes in these parameters may lead to divergence or wrong results.
2. Cubic radial functions and the PMGV scheme furnish accurate results to the BS equa-

tion, with a broad variation of r and values.

Thus, the numerical methods herein proposed are accurate and amenable to be used to soive
Black and Scholes equation. Special care should be taken when variations of the interest rate or
average volatility occur or tend to occur.
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