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Resumo

mrtan‘ces de¢ enge nh aqaﬁnanceqra $30 basaados em equa- V

‘ ~Black~Scholes, e sdo usados para predizer a rentabilidade de opgoes
nceiras €, assim, auxiliar nos processos de decis@o. As equagdes de Black-
holes consistem de um sistema de equagdes hiperbdlicas parabdlicas, com
metros € varidveis estocdsticas. Este artigo mostra a aplicagdo de um
gtodo de diferencas finitas, desenvolvido recentemente, para resolver as
oes fundamentais de Black-Scholes quando aplicadas a vérias opg¢oes
anceiras dependentes do caminho. Por comparacido com solucdes analiti-
sdisponiveis, os resultados mostram que o método difusional permite ana-
de maneira acurada as opgOes de barreira dependentes do caminho e
tros problemas de engenharia financeira relacionados. Devido & sua simpli-
e, o método de diferencas finitas difusional compete favoravelmente

m outros esquemas de diferencas finitas.
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1. Introduction

nly simple contracts in stock markets can be handled in a semi-quantitativef ¢
way. The most important models of financial engineering are based onf T
Black-Scholes equations, and are used to predict the outcome of financial ] f
options and derivative securities and, thus, help in decision-making processes (COXE I
& RUBINSTEIN, 1985). The Black-Scholes option-pricing model is used to de- o
termine the expected value of an option. It provides insight into the valuation off c
debt relative to equity (HULL, 1989; SIEGEL et al., 1992). Black-Scholes basicf E

equation is a linear parabolic hyperbolic equation, with stochastic variables andf
parameters.

e B¢ ]

Several finite difference methods have been proposed to solve the cited modelf
and similar convection-diffusion equations, with varying degrees of successt
(HOFFMAN, 1992; MURPHY & PRENTER, 1985; WILMOTT, 1998;
WILMOTT et al., 1995). Different weighted residual methodologies are also
available (LEE et al., 1987; ZIENKIEWICZ & TAYLOR, 1991).

The diffusional method was recently proposed (FORTES, 1997; FORTES &} A
FERREIRA, 1998; FORTES & FERREIRA, 1999) and is based on transforming o
the original hyperbolic parabolic partial differential equation into a parabolic partialf ©
differential equation; further application of finite difference formulation leads to af
tridiagonal form, readily amenable to computer implementation. The method is f\“
simple to apply and will be shown to perform much better when solving benchmark
and practical problems, than the commonly employed finite difference techniquesf.
(implicit finite-difference methods including Crank-Nicolson, Douglas schemesf C
ADI and Hopscotch methods; see HOFFMAN (1992) for limitations on these i d
methods). P
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h recent papers the diffusional finite difference method was applied to analyze
erivatives in financial engineering, with special attention to Black-Scholes call
ption equation (FORTES et al., 2000-a; FORTES et al., 2000-b). Up to present
o time dependent jump condition associated to Black-Scholes equation has been
analyzed in conjunction with the diffusional method. Thus, this paper aims at
presenting the diffusional method as applied to the analysis of path dependent
options with particular reference to Barrier Options.

2. Background S

2.1 Some basic aspects and definitions of financial
engineering

Calls and puts are the two simplest forms of financial options. A call option is the
right to buy a particular asset for an agreed amount at a specified time in the
future. As an example, consider the following call option on a stock of an industry.
It gives the holder the right to buy one of the industry stock for an amount $90 in
Lone month's time. Today's stock price is $85. The amount '90' which the purchaser
can pay for the stock is called the exercise price or strike price. The date on
which he must exercise his option, if he decides to, is called the expiry date. The
stock on which the option is based is known as the underlying asset. He would
exercise the option at expiry if the stock is above the strike and not if it is below.
IfS means the stock price and E the strike then at expiry, t =T, the option is worth

MS = max(S — E,0) 1)

where M(S) is the option value at expiry, or, in other words, M(S) is a function of
the underlying asset and is called the payoff function. At any other time t, the
option value will be called V(S,t); in this way, V(S,T) = M(S).

Aputoption is the right to sell a particular asset for an agreed amount at a specified
time in the future. The holder of a put option wants the stock price to fall so that he
can sell the asset for more than it is worth. The payoff function for a put option is

V(S,T) = max (E - S,0) (2)
The option is only exercised if the stock falls bellow the strike price.

One of the most interesting features of calls and puts is that they have a non-linear
dependence on the underlying asset. This non-linearity is very important in the
pricing of options.
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on call options will be considered since put options can be treated similarly.
Figure 1 shows the value of a call option as a function of the underlying, at expif
(payoff curve or diagram), t =T and at a time t < T. fo
car
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Figure 1 - Diagram for a call option. F‘nov

]
A payoff diagram tells about what happens at expiry, how much money the opti P |
contract is worth at that time. The main objective of financial engineering, wh l

options are at stake, is to define the function V(S,t), since this function will inforf

the value of the option at any time t, and thus, allows buying or selling an option

a desired acceptable value.

There are several models that lead to estimates of V(S,t); the most importal
models are based on Black-Scholes equations. The original and most famous Blaclp)
Scholes equation is the following stochastic-deterministic equation, whose maf

A e

stochastic parameter is the volatility (akin to standard deviation) of the underlyi
asset, o, and the practiced interest rate, r:

2
a—V+10'ZSZa—V+rSi\£—rV =0
o 2 0S? S
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The Black-Scholes equation is a linear parabolic partial differential equation and is
similar to the convection-diffusion equation found in fluid mechanics.

2.2 Barrier Options

By choosing the right options, such as barrier options, among others, a purchaser
can reduce his risks. Barrier options have a payoff that is contingent on the
‘underlying asset reaching some specified level before expiry. There are two main
types of barrier option (WILMOTT, 1998):

* The out option that only pays off if a level is not reached. If the barrier is
reached then the option is said to have knocked out:

+ The in option that pays off as long as a level is reached before expiry. If the
barrier is reached then the option is said to have knocked in.

Abarrier option can also be characterized by the position of the barrier relative to
theinitial value of the underlying:

* If the barrier is above the initial asset value, one has an up option.
¢ If the barrier is below the initial asset value, one has a down option.

- The main boundary conditions for the most common barrier options are discussed
. 1OwW.

a) Up-and-out barrier option with the barrier level at S = Su: In this case, the
Black-Scholes equation must be solved for0<S<S .

V(Sut)=0fort<T “)
and, if the barrier is not triggered
V(S,T) = max(S - E,0) 5)
b) Up-and-in barrier option with the barrier level at S = Su: If the option is an up-
and-in contract then on the upper barrier the contract must have the same
value as a call option contract. In this case, the Black-Scholes equation must
be solved for Su < S < co.

V(Su, t) = max(S - E,0) Su<S <o (6)

VS, T) =0 0<S<S, @)
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¢) Down-and-out barrier option with barrier level at S = S. In this case, {§®
S, €8S <o, if the barrier is not triggered

V(S,T) = max(S — E,0) (i
and, if the barrier is triggered.

V(S0 =0 N (

d) Down-and-in barrier option with the barrier level at S = S . If the option i
down-and-in contract, then on the lower barrier the contract must have t
same value as a call option contract. Thus

V(S,, ) = max(S - E,0) for0<S<S, a

V(S,T)=0 forS, S < oo al

It is important to remind that for a simple call option the boundary conditions
V(S,T) = max(S —E,0) for 0 <SS < oo,

[AY

3. Methodology

3.1 The diffusional method applied to y
Black-Scholes equation 0]

In this work, the Diffusional Method was applied to solve equation (3). This equati
must be solved with a final condition depending on the payoff: each contract wi
have a different functional form prescribed at expiry t = T, depending on whet}i
itis a call, a put or something more fancy. The final condition must be imposedb
make the solution unique. In order to make it an initial boundary value problem |

us make T =T - t, so that equation (3) becomes |

V 1 .,V oV @
2 el sf V=0 |
o 2°7 97 Tos ! (Tota

In order to put this last equation in the form expressed by a convection—diffusithe
equation and amenable to the diffusional method, use is made of the identity ech

(1 ,,0V) 1 ,,9*°V , 9V i:m
226282 |=206%S s
as(zcj as) 277 55t 777 %s Uppr
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—0o’S ]+(02—r a—V+rV:O (14)

avV 9
2 oS 0S

Jt 9S

'Equation (14) is then similar to the transient one-dimensional convection-diffusion

oV dV 9 (_.9dV
—t+tu——-—|I'— =0
ot " os as[ as)+Q (15)
| where one can easily identify
I e
u=(0*-rp; T=_08";  Q=rv (16)

3.2 The diffusional finite difference method for solving
Black-Scholes equation

By assuming u/I" to be constant or an average within the integration range,

ORTES (1997) and FORTES & FERREIRA (1999) showed that the above
gquation (15) can be put into the following diffusional form

_2PeS _2PeS _2Pe S
e 2\1— a(l"e as a—V]+e 85Q=0 17)

ot oS oS

' uAS 2_rIAS
where Pe is a Financial Peclet number, Pe = Sr O Pe = ngk and AS is the
c

fotal domain of the problem, or the mesh size, in the case of numerical schemes.

‘ eabove equation (17) is in an excellent form, suited to be solved by any numerical
echnique, and more particularly, by the finite difference method.

Consider the one-dimensional control volume shown in Figure 2. Finite difference
pproximations to the exact partial derivatives appearing in the partial differential
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equation must be developed. For simplicity of notation S-S, = S,, -S, = AS
denoted by h, where AS is now clearly depicted as a characteristic (spot markg¥
price) length (in this case, the mesh size).

i-1 i i+1 — S
Figure 2 - One-dimensional control volume

Using a central difference approximation and assuming a uniform grid spacing
diffusive term of equation (17) can be written as

_2PeS _2PeS _2PeS ‘
9 [e 0 WV 1 e * » —( e *n N ( :
3S 3| h S L. 9 )i

where the subscript i + Y2 indicates an evaluation at the point midway betweenf
and S, | and the subscript i - %2 is defined similarly. Thus one can write

2PeS
9 [e © CAM Y l"e‘ky— - Fepea—v (lin
ds dS h 0S Jiii/a 0S )i .

Again, by assuming constant local properties, replacing the appropriate derivati »
by central difference approximations, and rearranging, one obtains

~~

%(Fe-”:s ?)_\S/] ) hLZ [e_PeViﬂ - (e—Pe +e’ )Vi +ePeVi—1]

The source term can be approximated by applying the log-mean difference concg
to the exponential term multiplying Q, and assuming Q constant or an avera
within the element. Thus,

2Pe § -
_2Pe ePe_e Pe

e " Q’*TQ (
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The transient term is approximated by a one-sided difference for the first derivative
with the log-mean difference concept being applied to the exponential term,

e,”;]es a_V ~ ePe _e—Pe Vin+1 —Vin
ot 2Pe At (22)

where n stands for time plane and A is the time interval. Making use of the mean
value theorem, equations (20, 21 and 22) can be substituted into equation (15),
resulting in a set of algebraic equations whose ith-equation is given by

V_n+l VA Pe
i iy 9{—- ZPGF[ € - Vi;lJlrl — (coth Pe)vin+l

A’C h2 LePe —e”

—Pe Pe
€ n+! n+l 2Pell € n
+ Pe e—Pe Vi” } + Q } + (l - e){_ h2 ePe _ .-Pe Vi—l

(23)

—Pe

~ (coth Pe)V" + GPLT v } +Q" } =0

where 0 < © < 1. The parameter 0 is a weighted average of the explicit (0 = 0) and
implicit (8 = 1) methods. The implicit and explicit schemes have a truncation error
0(dt) and the Crank-Nicolson scheme, 6 = 1/2, an error O(dt?). Because of this,
in financial engineering, Crank-Nicolson scheme is more used. Recently,

1 ds?
researchers have used the Douglas scheme, 0=E— led
T

| improvement in the order of accuracy (WILMOTT, 1998).

, that leads to an

RNy

. Inorder to facilitate comparison with other numerical methods, a local parameter

0, defined by o =coth Pe —1/Pe, is substituted into equation (23), leading after
algebraic manipulations to

A/ A r an 20
[T] + e{— 7 [Pe(or + 1) + 1] V! + = [Pec +1] V!

- LZ [Pe(o—1) + 1]Vt + Q““} +(1- 9){— % [Pe(a+1) +1] V2, +
h h 24)

+§—£[Peoc+l]Vi“ —hLZ[Pe(oc—l)ﬂ]vi"+l +Q“}=O
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Regardless of which value is specified for 0, equation (24) can be rewritten in th
form:

a OV +(b, +b 0V +c OV =

i+l

-d; —a,(1-0)V", +(b, =b,(1-0))V" —c,(1-0)V,

with the following coefficients,

a, =—Pe(+1)—1;b, =2+ 2Pea;c, = —Pe(a—1)-1; vl
2Pe h?

b = = n+l _ n

=G , d. F[eQ +(-0)Q"] et

where Courant number, C, is defined as C = (uAt)/h.

Equation (25) represents a set of equations that can be solved to give the option
values for all possible S values and time values.

4. Results and Discussion

Figures below show the numerical solutions of Black-Scholes equation for cal e

option pricing, and, down-and-out, down-and-in and up-and-out call options. Th =
associated parameters were: E = 100, r = 10% and 6 = 25%. The expiring timiin
was taken to be T = 1, and the solution was obtained for both the call option valufid
and the payoff function at t = 0. The solution was obtained by means of the fullfs
explicit procedure (8 = 0) and, thus, all V values at time t-At could be obtainef
directly from the previous values at time t, without any recourse or need to solvinf
a system of equations. For a simple call option the analytical solution is given bt

V(S,T—t)=S-N(d,)-E-N(d,)-e™ ™™ el
where |
ln[%)+[r+%02J-(T—t)
_t)= 2
d,(S,T-t) s
d,(S,T-t)=d,(S,T-t)-0-JT—t 3
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Nis the cumulative normal probability density function

2

X 1
N(x) = (2n) %j 2" du+— 31
0

instantaneous Payoff function, M, is given by
S—Ee™ ™) if S—Ee (™) >0 S
M(S, T-t))== ’
( ) { 0, otherwise (32)

4.1 Down-and-out call option

ider the down-and-out call option with barrier level S, below the strike price
e function V (S,t) is the Black-Scholes value of a simple call option with the
maturity and payoff as the barrier option. The analytical solution is then
nby (WILMOTT, 1998)

[ S ]l—Zr/CI2 [SZ ]
VS, )=V, S,,.0—| — \'A t (33)
S, S

value of this option is shown as a function of S in Figure 3. The barrier level
80 and AS=1 were used. Also shown is the value of simple call option. The
rical results do not differ significantly from the exact solution and thus, exact
numerical value curves overlap each other in the figure.

80+

i

70 Down-and-out aption value
Call option value

60}\ e Payoff function

50 f

] F

40- I

Call option price

0 20 40 60 80 100 120 140 160 180
Spot market price

3 - Value of a down-and-out call option
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4.2 Down-and-in Call Option

In the absence of any rebates the relationship between an 'in' barrier option
an ‘out’ barrier option (with same payoff and same barrier level) is

in + out = simple call option 7 (

If the 'in’ barrier is triggered then so is the 'out’ barrier, so whether or not
barrier is triggered the simple call option payoff is still obtained at expiry. Thus,
value of a down-and-in cal option is

S 1-2r/a? Sz
V(S,t) =[—] V{—“,t]
Sy S

The value of this option is shown as a function of S in Figure 4. The barrier le

o~

S, =90 and AS=5 were used. Note that the values of down-and-in option
simple call option coincide at the barrier. Again, the numerical results do not di
significantly from the exact solution.

Down-and-in call option

45— ©— Call option
}. - o - Payoff functio

Call option price

0O 20 40 60 80 100 120 140 160
Spot market price

Figure 4 - Value of a down-and-in call option
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4.3 Up-and-out Call Option

g barrier S for an up-and-out call option must be above the strike price E
therwise the option would be worthless). This makes the solution for the price
re complicated.

exact value of an up-and-out call option is (WILMOTT, 1998)

V(S,T —t) = S(N(d,) — N(d,) - b(N(d,) - N(dy)))

~Ee "™ (N(d,) - N(d,) -a(N(d,) - N(d,))) (36)
ere d, and d, are given by equations (29 and 30) and
S, s s\
a=(? and b=[?b] 37)
lr{—ss—]+[r—%o'2)-(T—t)
4,8, T-t)=—120 (38)
o-vT—-t
lnE)+(r+lcz]-(T—t)
4,(6,T—1)=—\> 2 (39)
o-vT—t
ln(—sw]—(r+102)-(T—t)
4,(5,T—1)=—\> 2 (40)
o-NJT-t
ln[ij—[r—lczj-(T—t)
4,8, T - 1) = —2t 2 (41)
o-JT -t
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T-t
'lr{g)—(r+lcz)-ﬁ—t) o
dg(S, T-t)= o

The value of this option is shown in Figure 5. The barrier level S =110 and AS

were used. Also shown are the values of simple call option and down-and-in c§
option, for comparison. Again, the numerical results do not differ significant
from the exact solution.

—— Up-and-out call option
—a4— Down-and-in call option

104 O~ Call option 1
- = - Payoff function
o 81
(2]
H
c 9]
i)
B 4
o
® o
o 2

,, 0 20 40 60 80 100 120 140 160
Spot market price

e

Figure 5 - Value of an up-and-out call option

£

4.4 Performance of the diffusional method

The numerical results agreed with the convergence criteria presented by FOR
TES & FERREIRA (1999). It should be emphasized that whenever convergenf
was attained, the solutions were sound. It should also be noted that even coae
mesh refinements and rather large time-step led to rather acceptable solutions,
shown in Table I, in the case of simple call option. Similar results were obtain
for all barrier option simulations.

R
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' TABLE I.
ffect of temporal and mesh sizes on the numerical call option values
att =0

5. Conclusion

ethodology based on the diffusional finite difference method is shown to be
effective and reliable to solve financial engineering problems that are governed
he Black-Scholes equation.

hange in the format of the Black-Scholes equation had to be realized in order
dapt it to the standard form of the diffusional method. In this way, other more
iplex modified forms of Black-Scholes equation become amenable to solutions
he diffusional method. Accurate solutions could be obtained by means of the
y explicit scheme, which does not require solving a usual simultaneous set of
-linear equations.

merical evaluation of three barrier options led to excellent, accurate results.
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